

Evidence-based on advanced therapy

A presentation to: ASCoN Workshop and Conference 7-10th December 2017 Chiang Mai Thailand

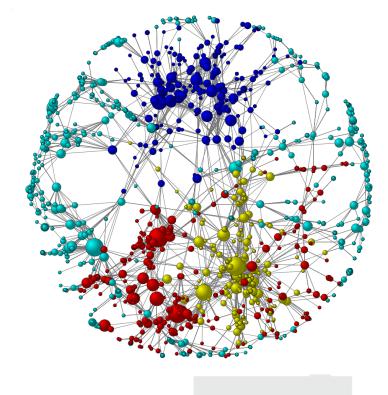
Assoc. Prof Dr Julia Patrick Engkasan Rehabilitation Physician University of Malaya Kuala Lumpur Malaysia

Trusted evidence. Informed decisions. Better health.

Contents

01	Introduction	to Cochrane	Rehabilitation	Field
----	---------------------	-------------	----------------	-------

- **02** Cycle of Evidence based Medicine
- **03** Locomotor therapy
- **04** Summary of evidence
- 05 What's next?



12 Cochrane Fields and Networks

- 1. Cochrane Child Health
- 2. Cochrane Complementary Medicine
- 3. Cochrane Consumer Network
- 4. Cochrane Global Ageing
- 5. Cochrane Global Mental Health
- 6. Cochrane Insurance Medicine
- 7. Cochrane Neurosciences
- 8. Cochrane Nursing Care

- 9. Cochrane Nutrition
- Cochrane Pre-hospital and Emergency Care
- 11. Cochrane Primary Care
- 12. Cochrane Rehabilitation

Vision

All rehabilitation professionals can apply Evidence Based Clinical Practice

Decision makers will be able to take decisions according to the best and most appropriate evidence

Mission

Allow all rehabilitation professionals to combine the best available evidence as gathered by high quality Cochrane systematic reviews, with their own clinical expertise and the values of patients

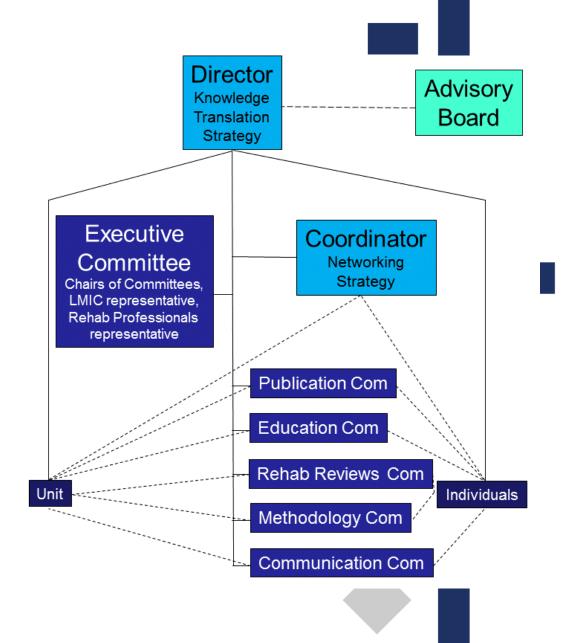
Improve the methods for evidence synthesis, to make them coherent with the needs of disabled people and daily clinical practice in rehabilitation.

Goals

- 1. To connect stakeholders and individuals involved in production, dissemination, and implementation of evidence based clinical practice in rehabilitation, creating a global network
- 2. To undertake knowledge translation for Cochrane on reviews relevant to rehabilitation, with dissemination to stakeholders, in line with Cochrane's knowledge translation strategy
- 3. To develop a register of Cochrane and non-Cochrane systematic reviews relevant to rehabilitation

Goals

- 4. To promote Evidence Based Clinical Practice and provide education and training on it and on systematic review methods to stakeholders
- 5. To review and strengthen methodology relevant to Evidence Based Clinical Practice to inform both rehabilitation and other Cochrane work related to rehabilitation and stimulating methodological developments in other Cochrane groups
- To promote and advocate for Evidence Based Clinical Practice in rehabilitation to other Cochrane groups and wider rehabilitation stakeholders



Cochrane Rehabilitation Internal organization

Trusted evidence.
Informed decisions.
Better health.

Website

Trusted evidence. Informed decisions. Better health.

Cochrane Library Cochrane.org Search...

Keep Posted

Tube

About us Evidence **News & Events** Get Involved Contact us Resources

Cochrane News

- World Kidney Day
- Early bird registration and stipends now open for the Global Evidence Summit
- Anne Anderson Prize: recognizing the enhancement and visibility of women in Cochrane
- New Cochrane Library Special Collection: Enabling breastfeeding for mothers and babies
- # Breastfeeding: evidence on effective support and enablers for mothers and their babies

More

Latest News and Events

Cochrane Rehabilitation present at "Rehabilitation

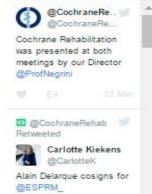
Cochrane

Colloquium 2017

12-16 September 2017 Cape Town, South Africa

Join us for the Global Evidence Su

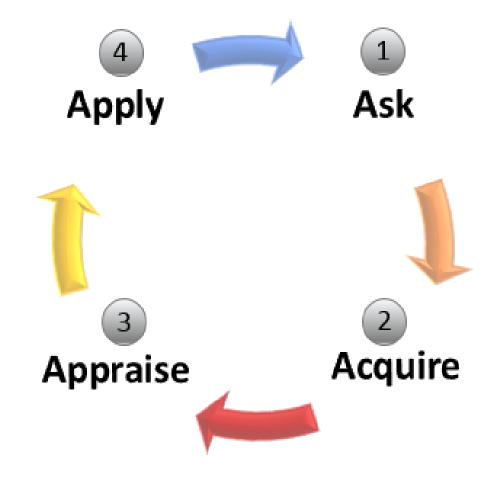
Cochrane Press Release for the Official Launch



Signature of Memorandum of Understanding,

Brescia, Italy

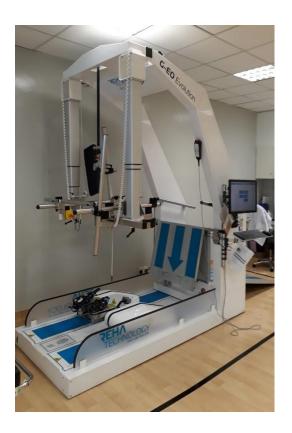
Tweets by @CochraneRehab



EBM Cycle

Evidence-based on advanced therapy

There is a decision to make...



Locomotor training

Step training

Train them how to step well

Coordinated step, adequate speed

Provide sensory input specific to waking

Overground training

Patient stands and walks on level surfaces

Community training

Locomotor training

Role of spinal cord in the control of walking

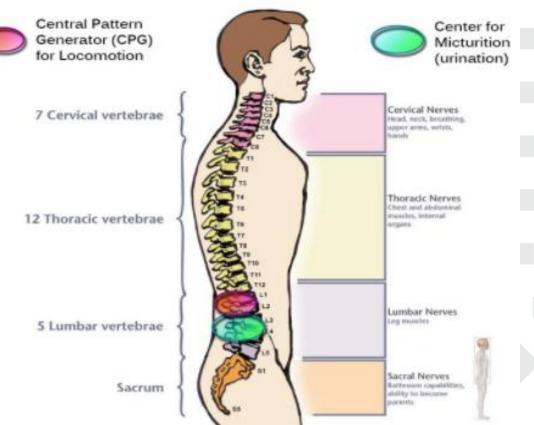
Intense repetitive training can lead to coordinated stepping response

Provide sensory experience of walking – the right way of walking

(compared to gait training)

Activity-based therapy

Aim is independent community walking without aids or compensatory movements

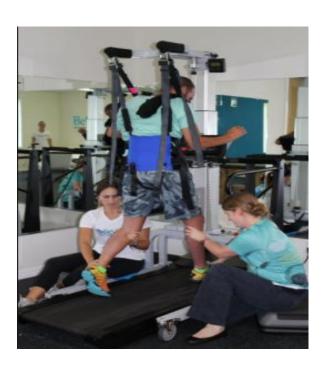

Physiological basis of locomotor training

Focuses on retraining the motor function via plastic change

Enhances the afferent input to the spinal cord an activates the central pattern generators (CPGs) embedded within the lumbosacral spinal cord

Plastic changes in the spinal cord and sensory motor cortex

Only in incomplete injury



Other forms of therapy

Advantages & disadvantages of robotics locomotor training

Early initiation in severely dependent persons

Able to increase the intensity and duration of training while maintaining a physiological gait pattern

Biofeedback system

Reduces personnel cost

Expensive to buy

Expensive to maintain (software licensing / updates)

Trained personnel

Space

Access

Finding the evidence

Randomized Control Trials

Cohort Studies

Case-Control Studies

Case Series, Case Reports

Editorials, Expert Opinions

- P Persons with SCI
- I Robotics Gait Training
- C Other forms of physiotherapy
- O Impairment (strength), Activity (walking Speed, distance, safety)

Methods

- Developed search strategy
 - Search terms & databases
 - (Locomotor, gait, walking, ambulat*, Robotics paraplegia, SCI, paralysis)
- Published systematic reviews of locomotor therapy in person with SCI

Study ID/ year	Population	Intervention	Comparison	Outcome(s)
Mehrholz et al 2017	Any age ,gender type of traumatic SCI, time post injury, level of initial walking ability	BWSTT and robotic gait training	Overground gait training and any other forms of physiotherapy	Walking speed and walking distance
Nam et al 2017	Acute & chronic, Traumatic & non- traumatic, non progressive, Incomplete spinal cord injury (AIS B,C,D), Variable walking ability	RAGT (Lokomat)	Other exercise / physiotherapy (BWS gait training or no treatment)	Gait distance (2 and 6min) Gait velocity (m/s), LEMS FIM-L, WISCI, spasticity & TUG
Tefertiller et al. 2011	Adults with stroke, SCI, TBI, MS and PD	Robotic locomotor training (Lokomat , Lokohelp Gait trainer)	Overground training, FES	Walking speed (10MWT, 5MWT, 25FWT) Walking endurance (capacity to cover a distance in a defined time) 6MWT, 2MWT Time measures of functional mobility TUG (Timed Up and Go) Level of independence • SCIM • WISCI • WISCI II

Study ID	N studies	N participants	Treatment protocol	Robotics intervention	Treatment duration
Mehrholz 2017	5 studies RCTs (3 studies)	344 (141)	varies	Varies	Varies
Nam et al 2017	10 studies RCTs	502	30-60mins; 3- 5X per week	Lokomat	varies
Tefertiller et al. 2011	13 studies 2 RCTs and 11 non-RCTs (3 CR, 4 CS, 2PP, 1CC &	51	45 mins, 5x week	Lokomat	12 weeks
	1 cohort)				

Tefertiller et al. 2011

Table 6.

Spinal cord injury studies: Characteristics of randomized controlled trials (RCTs).

Article	Study Type	PEDro Sample Rating Size		Device Type	& Weekly		Total No. of Sessions
Field-Fote et al., 2005 [1]	RCT	4	27	Lokomat	45 min, 5×/wk	12 wk	44.5 (mean)
Nooijen et al., 2009 [2]	RCT	4	51	Lokomat	45 min, 5×/wk	12 wk	50.0 ± 6.6

Table 10. Spinal cord injury (SCI) studies: Outcomes.

Article	Intervention	Gait Outcomes	Other Outcomes	Results
Field-Fote et al., 2005 [1]	TM, TM + FES, OG + FES, LR	6MWT, 2MWT	Step length, step ratio	Significant ↑ in walking speed across all subjects; differences between groups not statistically significant; 85% ↑ in speed with slower initial walking speed (<0.1 m/s); Only 9% ↑ in faster walking speed group (>0.1 m/s); Step length increased in all groups except LR; LR had greatest ↑ in symmetry.
Nooijen et al., 2009 [2]	TM, TM + FES, OG + FES, LR	Gait Rite: Cadence, step length, stride length, SI		↑ gait quality in all groups after training; no significant between-group differences found for any parameters; interaction effect showing least amount of step and stride length changes in LR group.

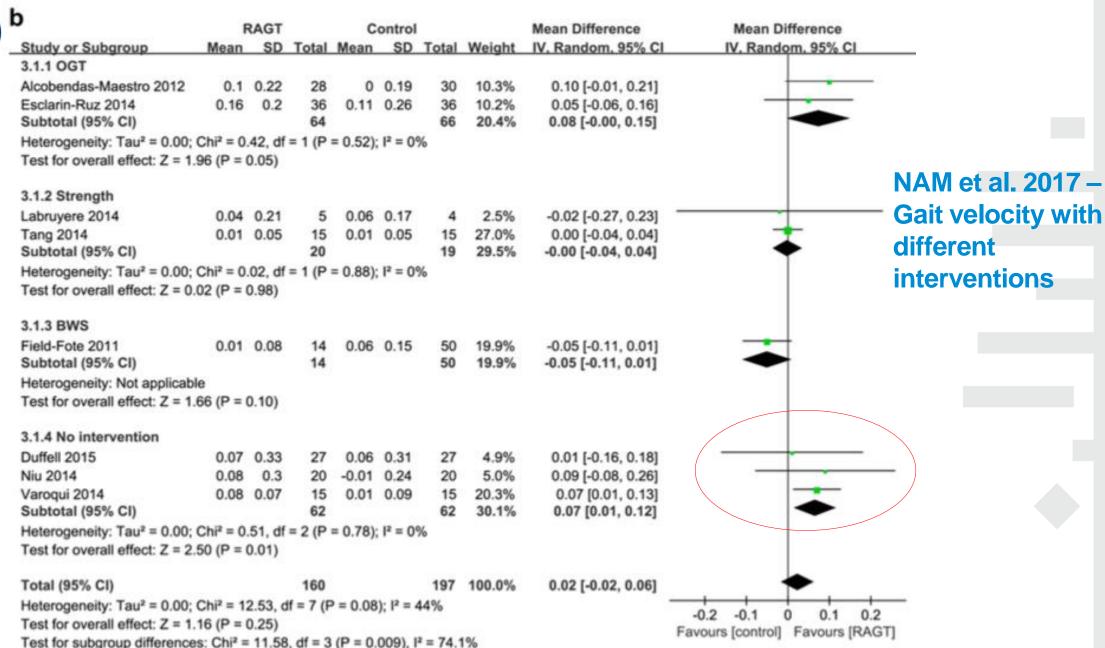
NAM et al. 2017 – Gait velocity with time since injury

-0.2 -0.1

0

Favours [control] Favours [RAGT]

0.1 0.2


а RAGT Control Mean Difference Mean Difference Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI Study or Subgroup 2.1.1 <6months Alcobendas-Maestro 2012 0.1 0.22 28 0 0.19 10.3% 0.10 [-0.01, 0.21] Esclarin-Ruz 2014 0.16 0.2 36 10.2% 0.11 0.26 0.05 [-0.06, 0.16] 20.4% Subtotal (95% CI) 0.08 [-0.00, 0.15] Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 0.42$, df = 1 (P = 0.52); $I^2 = 0\%$ Test for overall effect: Z = 1.96 (P = 0.05) 2.1.2 >12months Duffell 2015 0.07 0.33 0.06 0.31 4.9% 0.01 [-0.16, 0.18] 27 0.06 0.15 Field-Fote 2011 0.01 0.08 19.9% -0.05 [-0.11, 0.01] Labruyere 2014 0.04 0.21 0.06 0.17 2.5% -0.02 [-0.27, 0.23] Niu 2014 0.08 0.3 -0.01 0.24 5.0% 0.09 [-0.08, 0.26] 0.01 0.09 Varoqui 2014 0.08 0.07 15 20.3% 0.07 [0.01, 0.13] Subtotal (95% CI) 81 116 52.5% 0.02 [-0.05, 0.09] Heterogeneity: Tau2 = 0.00; Chi2 = 8.99, df = 4 (P = 0.06); I2 = 56% Test for overall effect: Z = 0.50 (P = 0.62) 2.1.3 Unknown Tang 2014 0.01 0.05 15 0.01 0.05 27.0% 0.00 [-0.04, 0.04] 15 15 Subtotal (95% CI) 27.0% 0.00 [-0.04, 0.04] Heterogeneity: Not applicable Test for overall effect: Z = 0.00 (P = 1.00) Total (95% CI) 0.02 [-0.02, 0.06] 160 197 100.0%

Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 12.53$, df = 7 (P = 0.08); $I^2 = 44\%$

Test for overall effect: Z = 1.16 (P = 0.25)

Test for subgroup differences: Chi² = 3.13, df = 2 (P = 0.21), I² = 36.2%

NAM et al. 2017 – Gait distance

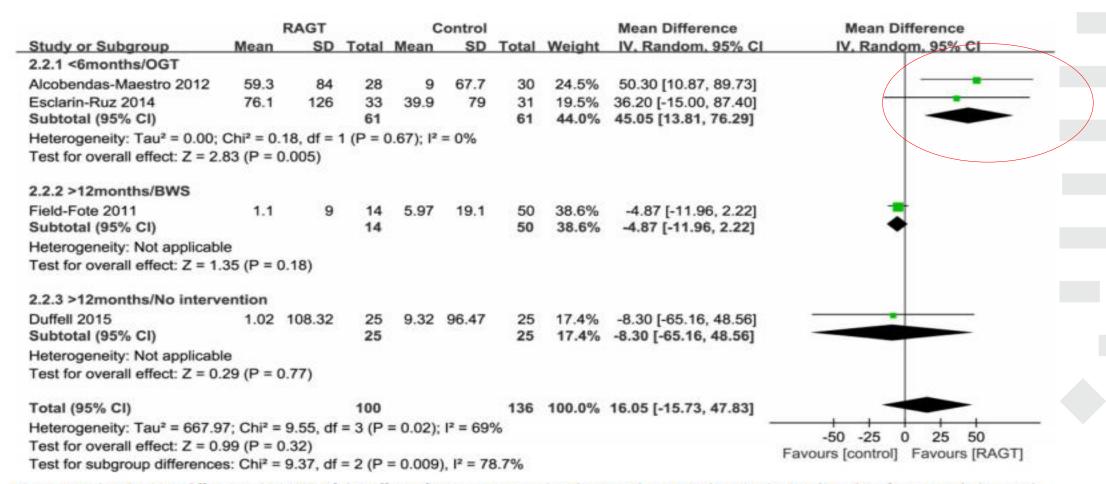


Fig. 3 Weighted mean difference (95% CI) of the effect of RAGT compared with control on gait distance by pooling data from 4 trials (n = 298) with subgroup analysis by time since injury (acute < 6 months, chronic > 12 months) and type of intervention (BWS, OGT, and no intervention) in people with SCI

Mehrholz et al

RAGT – 5 RCTs and 344 participants

Walking speed: 3 trials with 141 participants

Walking distance: 3 trials with 141 participants

Mehrholz et al. 2017

Table 3 Details of the interventions and outcomes from each trial included in the meta-analysis for comparison no. 2 comparing robotic-assisted gait training with overground training and other forms of physiotherapy (Figures 4 and 5)

Study	Robotic group	Overground group	Outcomes
Esclarin-ruz et al. ¹⁵	Robotic-assisted gait training and overground training	Overground gait training	Walking speed Walking capacity
Field-fote and Roach ¹⁸	Robotic-assisted gait training with BWSTT	Overground gait training with FES and BWS	Walking speed Walking capacity
Hornby et al. ²⁰	Robotic-assisted gait training on a treadmill	Overground gait training with FES	Walking speed Walking capacity
Shin et al. ²⁶	Robotic-assisted gait training	Overground gait training	No useable data ^a
Labruyere et al. ²¹	Robotic-assisted gait training	Strength training of lower limbs (without gait training)	No useable data ^b

Abbreviations: BWS, body-weight support; BWSTT, body-weight-supported treadmill training; FES, functional electrical stimulation.

^aThis study did not include measures of walking speed or walking capacity.

bThis study was a cross-over trial but did not provide the data from the first period only. The data provided in the study were therefore not useable.

Mehrholz et al. 2017 – Walking speed

Favours overground Favours robotic

	Robotics			Overground				Mean Difference	Mean Difference	Risk of Bias	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	ABC	
Esclarin-Ruz 2014	0.5	0.28	44	0.42	0.36	44	45.7%	0.08 [-0.05, 0.21]	-111-	$\bullet \bullet \bullet$	
Field-Fote 2011	0.18	0.1	15	0.28	0.28	18	44.9%	-0.10 [-0.24, 0.04]	-111-	??+	
Hornby 2007	0.51	0.65	10	0.82	0.507	10	9.4%	-0.31 [-0.82, 0.20]	· · · · · · · · · · · · · · · · · · ·	???	
Total (95% CI) 69 72 10								-0.04 [-0.21, 0.13]	•		
Heterogeneity: Tau ² =	0.01; Ch	hi² = 4.	- 	_							
Test for overall effect:	Z = 0.43) (P = (0.66)	-0.5 -0.25 0 0.25 0.5							

Mehrholz et al. 2017 – Walking distance

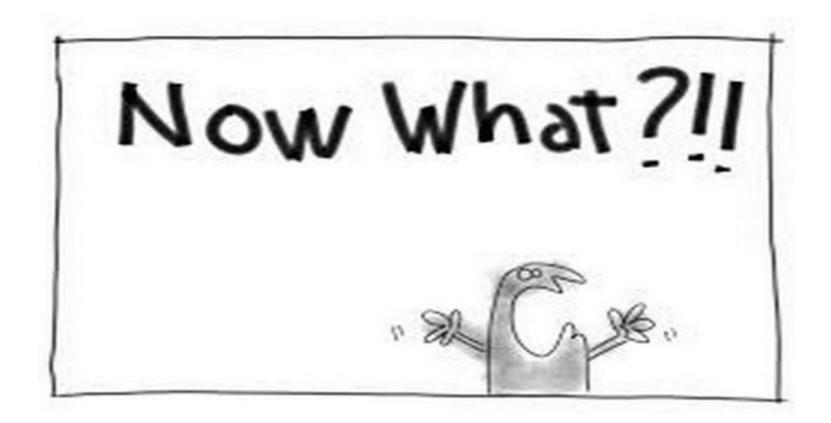
	R	obotics	3	Overground			Mean Difference		Mean Difference	Risk of Bias
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	IV, Random, 95% CI	ABC
Esclarin-Ruz 2014	172.51	96.65	44	132.52	107.2	44	46.6%	39.99 [-2.66, 82.64]		\oplus \oplus \oplus
Field-Fote 2011	53.7	35.7	15	114.9	138.3	18	39.2%	-61.20 [-127.60, 5.20]	_ 	? ? 🗭
Hornby 2007	245	246.82	10	250.67	158.67	10	14.2%	-5.67 [-187.53, 176.19]		???
Total (95% CI)			69			72	100.0%	-6.14 [-85.92, 73.63]		
Heterogeneity: Tau ² =	3079.47;	$Chi^2 = 6$	000 400 0 400 000	_						
Test for overall effect:	Z = 0.15	(P = 0.88)	-200 -100 0 100 200 Favours overground Favours robotic							

Improvement in the walking speed

• 0.07m/s (Nam et al)

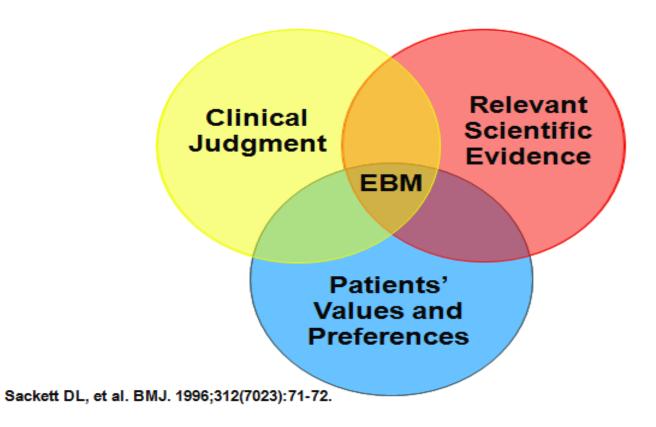
Improvement in distance covered

• 45m (Nam et al) (Acute SCI)


Possible improvements

	Robotics			Overground				Mean Difference	Mean Difference	Risk of Bias	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	ABC	
Esclarin-Ruz 2014	0.5	0.28	44	0.42	0.36	44	45.7%	0.08 [-0.05, 0.21]	+111-		
Field-Fote 2011	0.18	0.1	15	0.28	0.28	18	44.9%	-0.10 [-0.24, 0.04]	-111-	??+	
Hornby 2007	0.51	0.65	10	0.82	0.507	10	9.4%	-0.31 [-0.82, 0.20]		???	
Total (95% CI)			69			72	100.0%	-0.04 [-0.21, 0.13]	•		
Heterogeneity: Tau ² =	Heterogeneity: Tau ² = 0.01; Chi ² = 4.63, df = 2 (P = 0.10); l ² = 57%										
Test for overall effect:	-0.5 -0.25 0 0.25 0.5										
		1.	,					Fa	avours overground Favours robotic		

Possible increase in walking speed (0.13m/s) with Robotics compared to OGT



What Is Evidence-Based Medicine?

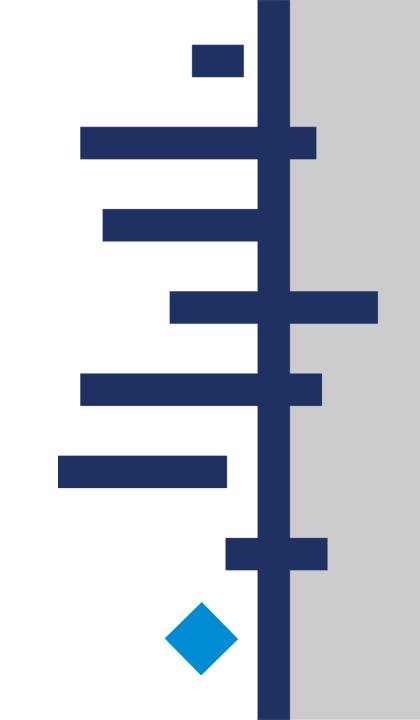
Your clinical judgement

Local context

Patient preferences and values

The differences in the outcome
What does 0.13 m/s improvement mean?

What does USD3,000 means to them?



THANK YOU

Julia Patrick Engkasan Rehabilitation Physician University Malaya Kuala Lumpur Malaysia

julia@ummc.edu.my

