Methodological issues in rehabilitation research

Antti Malmivaara, MD, PhD, Chief Physician Centre for Health and Social Economics. National Institute for Health and Welfare

Potential conflicts of interests

Finnish Institute for Health and Welfare, Centre for Health and Social Economics, Chief Physician

Current Care Guidelines, Finnish Medical Association Duodecim, Editor

Ministry for Social Affairs and Health, Council for Choices in Health care in Finland, Expert

Hospital ORTON, Scientific Board, Member

European Academy of Rehabilitation Medicine

Cochrane Back and Neck Review Group, Editorial Board

Cochrane Rehabilitation Field: Member of the Executive Committee; Chair of the Methodology Committee

8.5.2018

Antti Malmivaara
Cochrane Rehabilitation
Methodology committee

Antti Malmivaara, Chair (Finland)
Thorsten Meyer, Co-chair (Germany)
William Levack (New Zealand)
Chiara Arienti (Italy)
Stefano Negrini (Italy)
Primary purpose of the Methodology Committee

To lead Cochrane Rehabilitation activities in the area of methodology, and to develop and disseminate rehabilitation methodology within and outside Cochrane Collaboration.
Cochrane Rehabilitation Methodology Committee: an international survey of priorities for future work

William M. LEVACK, Thorsten MEYER, Stefano NEGRINI, Antti MALMIVAARA

The survey findings indicated strongest interest in

- How reviewers have applied and interpreted Cochrane methods in reviews on rehabilitation topics in the past
- On gathering existing publications on review methods for undertaking systematic reviews relevant to rehabilitation
Cochrane Rehabilitation Methodology Committee: On-going activities

Study on Pros and cons of RCTs in rehabilitation

➤ To answer relevant research questions, and to provide internal validity (risk of bias) and generalizability of evidence

➤ To discuss future needs to advance methodology of effectiveness research in rehabilitation

Catalyst project and another collaboration project

➤ Supplement issues on rehabilitation methodology in the European Journal of Physical and Rehabilitation Medicine and in the Journal of Rehabilitation Medicine
SPECIAL REPORT

REHABILITATION: THE HEALTH STRATEGY OF THE 21ST CENTURY

Gerold STUCKI, MD, MS1-3* Jerome BICKENBACH, LLB, PhD1-3*; Christoph GUTENBRUNNER, MD4 and John MELVIN, MD2,5

From the 1Department of Health Sciences and Health Policy, Faculty of Humanities and Social Sciences, University of Lucerne, Lucerne, 2Swiss Paraplegic Research (SPF), Nottwil, 3ICF Research Branch, a cooperation partner within the World Health Organization Collaborating Centre for the Family of International Classifications in Germany (at DIMDI), Nottwil, Switzerland, 4Department of Rehabilitation Medicine, Hanover Medical School, Hanover, Germany, 5Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.*Both of these authors contributed equally to this paper.

There is strong evidence that population ageing and the epidemiological transition to a higher incidence of chronic, non-communicable diseases will continue to profoundly impact societies worldwide, putting more pressure on healthcare systems to respond to the needs of the people they serve. These trends argue for the need to address what matters to people about their health: limitations in their functioning that affect their day-to-day actions and goals in life.

The objectives of this paper are to assemble the best demographic and epidemiological evidence about future trends, in order to build on the current conceptualization of the health strategy of rehabilitation, compared with other health strategies, and, utilizing the powerful notion of functioning as a health indicator, set out the best case for the proposition that rehabilitation is the key health strategy for the 21st century.
Real-effectiveness medicine - background

All activities within medicine (education, clinical work, leadership, research) have an ultimate aim to advance the health and wellbeing of everyday patients in ordinary health care settings.

Real-Effectiveness Medicine

Bench-marking
Learning from peers
Quality
Real world performance
EBM
Up-to-date evidence
Competence
Basis for effectiveness, efficiency and equality

The Royal Collage of Physicians and Surgeons of Canada framework for competence
Surgical Skill and Complication Rates after Bariatric Surgery

John D. Birkmeyer, M.D., Jonathan F. Finks, M.D., Amanda O’Reilly, R.N., M.S., Mary Oerline, M.S., Arthur M. Carlin, M.D., Andre R. Nunn, M.D., Justin Dimick, M.D., M.P.H., Mousumi Banerjee, Ph.D., and Nancy J.O. Birkmeyer, Ph.D., for the Michigan Bariatric Surgery Collaborative
Figure 2. Risk-Adjusted Complication Rates with Laparoscopic Gastric Bypass, According to Quartile of Surgical Skill.
Competence of staff, an example

52-year old woman, have had breast cancer
The breast has been surgically removed
Previously active physically, particularly swimming
After operation slight depression, negative expectations of future
Weight gain
Fear for social encounters
Fear for going to the swimming hall
Breast cancer removed

Physical activity ↓, Weight ↑

Family, work, swimming club, friends

Participation in swimming group ↓

Activities ↓, Fears, slight depression

Coping with the new situation

Kela

Antti Malmivaara, Terveys- ja sosiaalitalous -yksikkö, THL
Real-Effectiveness Medicine

REM – Evidence (level 2)

The second level of REM consists of the utilization of up-to-date of high quality scientific evidence, particularly from RCTs and systematic reviews, health technology assessment (HTA) reports, and clinical guidelines.

Also other scientific and patient-based information (e.g. on diagnostic tests and patients’ values and preferences) according to the EBM (Evidence Based Medicine) framework should be used.
Domain, cause and effect in RCTs

1. SELECTION AND BASELINE CHARACTERISTICS OF PATIENTS (DOMAIN)
 - Comprehensive and valid measurement and reporting of patient selection and characteristics of patients and relevant healthcare system features
 - Interpretation – PATIENTS
 - Baseline comparability is the first main validity criterion of RCTs.

2. ACTUALIZED INTERVENTION CONTRAST (CAUSE)
 - The causal factor is the actualized contrast between experimental interventions and between co-interventions
 - Comprehensive and valid recording of all actualized interventions in the treatment arms is mandatory for assessment of the cause-effect relationship
 - Interpretation – INTERVENTIONS
 - Actualized intervention contrast is the second main validity criterion of RCTs.
 - The conclusions should be made based on the between group contrast in the actualized experimental and non-intended interventions, not on those in the protocol. Consequently, the analysis will always be by intention-to-treat.
 - Blinding (patient, provider, outcome) is an important means for validity when assessing effectiveness of intervention per se. Blinding is contraindicated when assessing effectiveness of interventions in routine healthcare.

3. OUTCOME ASSESSMENT (EFFECT)
 - Outcome is the effect for the cause.
 - Comprehensive and valid outcome measurements at predefined follow-up times, and low loss to follow-up are essential for a valid study. Numbers and reasons for withdrawals or drop-outs must be reported.
 - Interpretation – OUTCOMES
 - Valid outcome measurement is the third main validity criterion of RCTs.
 - Comprehensive reporting of all outcomes (primary and secondary; effects and harms) is needed to avoid biased inferences.

Means for reaching valid design – PATIENTS
- Description of patient selection
- Randomisation and concealment of allocation

Means for reaching valid design – INTERVENTIONS
- Protocol defines the interventions in the treatment arms; actualization of experimental interventions as well as of co-interventions must be documented.
- Blinding, see interpretation on the right.

Means for reaching valid design – OUTCOMES
- Protocol defines use of outcome measures and follow-up time

Malmivaara A. Validity and Generalizability of Findings of Randomized Trials on Arthroscopic Partial Meniscectomy of the Knee. In Press
Antti Malmivaara
Validity and Generalizability of Findings of Randomized Trials on Arthroscopic Partial Meniscectomy of the Knee.

1. Selection and Baseline Characteristics of Patients (Domain)
 - Comprehensive and valid measurement and reporting of patient selection and characteristics of patients and relevant health care system features
 - Baseline comparability is the first main validity criterion of RCTs.

2. Actualized Intervention Contrast (Cause)
 - The causal factor is the actualized contrast between experimental interventions and between co-interventions
 - Comprehensive and valid recording of all actualized interventions in the treatment arms is mandatory for assessment of the cause-effect relationship
 - Actualized intervention contrast is the second main validity criterion of RCTs.

3. Outcome Assessment (Effect)
 - Outcome is the effect for the cause.
 - Comprehensive and valid outcome measurements at predefined follow-up times, and low loss to follow-up are essential for a valid study. Numbers and reasons for all cases of drop outs must be reported.
 - Valid outcome measurement is the third main validity criterion of RCTs.

In Press
Malmivaara A. Validity and Generalizability of Findings of Randomized Trials on Arthroscopic Partial Meniscectomy of the Knee. In Press
Validation and Generalizability of Findings of Randomized Trials on Arthroscopic Partial Meniscectomy of the Knee.

Antti Malmivaara

In Press
Randomized trials – Biological or real world effectiveness?

1. Intervention effect per se (biological) – blinded design
 - Assesses merely biological effect; is abstract effectiveness, not realizing in ordinary care
 - Number-needed-to treat – figures are not valid for real world effectiveness

2. Intervention effect in ordinary care – non blinded design
 - Assesses besides biological effectiveness, also the placebo effect and effects of information and guidance, and those of support and empowerment

Malmivaara A. Validity and Generalizability of Findings of Randomized Trials on Arthroscopic Partial Meniscectomy of the Knee. In Press

8.5.2018 Antti Malmivaara
Randomized trials – Biological or real world cost-effectiveness?

1. Blinded design – abstract knowledge
- Assesses mere biological intervention effectiveness and related use of health care services and respective costs
- Does not reflect real world cost-effectiveness, although used for this purpose (e.g. £ per HRQoL in UK)

2. Open, non-blinded design – real world knowledge
- Assesses biological intervention effectiveness + that related to placebo effect and use of health care services and costs
- However, cost-effectiveness varies according to staff competence, productivity and characteristics of health care system

Malmivaara A. Validity and Generalizability of Findings of Randomized Trials on Arthroscopic Partial Meniscectomy of the Knee. In Press
Malmivaara A. Quality of Reporting of Randomized Controlled Trials in the Leading Medical Journals (Manuscript)

161 RCTs (N on rehabilitation):

- BMJ 4 (0)
- JAMA 50 (2)
- Lancet 71 (1)
- NEJM 36 (0)

$\rightarrow 3/161 = 1.9\%$ on rehabilitation
Intensive speech and language therapy in patients with chronic aphasia after stroke: a randomised, open-label, blinded-endpoint, controlled trial in a health-care setting

Caterina Breitenstein, Tanja Grewe, Agnes Flöel, Wolfram Ziegler, Luise Springer*, Peter Martus, Walter Huber, Klaus Willmes, E Bernd Ringelstein, Karl Georg Haeusler, Stefanie Abel, Ralf Glindemann, Frank Domahs, Frank Regenbrecht, Klaus-Jürgen Schlenck, Marion Thomas, Hellmuth Obrig, Ernst de Langen, Roman Rocker, Franziska Wigbers, Christina Rühmkorf, Indra Hempen, Jonathan List, Annette Baumgaertner, for the FCET 2EC study group†

Summary
Background
Treatment guidelines for aphasia recommend intensive speech and language therapy for chronic (≥6 months) aphasia after stroke, but large-scale, class 1 randomised controlled trials on treatment effectiveness are scarce. We aimed to examine whether 3 weeks of intensive speech and language therapy under routine clinical conditions improved verbal communication in daily-life situations in people with chronic aphasia after stroke.
Figure 4: SAPS total score

(A) Mean score for the linguistic measure (SAPS total score) from baseline to after 3 weeks of intensive speech and language therapy in the intervention group and from baseline to after 3 weeks of treatment deferral in the control group. (B) Mean SAPS total score from baseline to after 3 weeks of treatment and 6 months after end of treatment in both the intervention and control groups. Minimum SAPS total score is 0 points, maximum is 900 points. Error bars represent SD. SAPS = Sprachsystematisches Aphasiescreening (language-systematic aphasiascreening).
Conclusions

Interpretation 3 weeks of intensive speech and language therapy significantly enhanced verbal communication in people aged 70 years or younger with chronic aphasia after stroke, providing an effective evidence-based treatment approach in this population. Future studies should examine the minimum treatment intensity required for meaningful treatment effects, and determine whether treatment effects cumulate over repeated intervention periods.
Real-Effectiveness Medicine

Benchmarking controlled trials
Bencharking Controlled Trial—a novel concept covering all observational effectiveness studies

Antti Malmivaara

Centre for Health and Social Economics, National Institute for Health and Welfare, Helsinki, Finland

The Benchmarking Controlled Trial (BCT) is a novel concept which covers all observational studies aiming to assess effectiveness. BCTs provide evidence of the comparative effectiveness between health service providers, and of effectiveness due to particular features of the health and social care systems. BCTs complement randomized controlled trials (RCTs) as the sources of evidence on effectiveness. This paper presents a definition of the BCT; compares the position of BCTs in assessing effectiveness with that of RCTs; presents a checklist for assessing methodological validity of a BCT; and pilot-tests the checklist with BCTs published recently in the leading medical journals.

Key words: benchmarking controlled trial, cost-effectiveness, effectiveness, inequality, real-effectiveness medicine

Key messages

- The Benchmarking Controlled Trial (BCT) is a novel concept which covers all observational studies aiming to assess effectiveness.
- BCTs assess difference in effectiveness between single or a set of intervention(s), between clinical pathways, or between interventions targeting health care system factors with an aim to increase effectiveness.
- Published BCTs have currently several methodological limitations, some of which could be avoided, and others should be acknowledged.
- BCTs support both clinical and policy decisions, and should be given a high priority in research and in improvement activities.

Clinical Impact Research – how to choose experimental or observational intervention study?

Antti Malmivaara

Centre for Health and Social Economics, National Institute for Health and Welfare, Mannerheimintie 166, Helsinki, Finland

ABSTRACT

Background: Interventions directed to individuals by health and social care systems should increase health and welfare of patients and customers.

Aims: This paper aims to present and define a new concept Clinical Impact Research (CIR) and suggest which study design, either randomized controlled trial (RCT) (experimental) or benchmarking controlled trial (BCT) (observational) is recommendable and to consider the feasibility, validity, and generalizability issues in CIR.

Methods: The new concept is based on a narrative review of the literature and on author’s idea that in intervention studies, there is a need to cover comprehensively all the main impact categories and their respective outcomes. The considerations on how to choose the most appropriate study design (RCT or BCT) were based on previous methodological studies on RCTs and BCTs and on author’s previous work on the concepts benchmarking controlled trial and system impact research (SIR).

Results: The CIR covers all studies aiming to assess the impact for health and welfare of any health (and integrated social) care or public health intervention directed to an individual. The impact categories are accessibility, quality, equality, effectiveness, safety, and efficiency. Impact is the main concept, and within each impact category, both generic- and context-specific outcome measures are needed. CIR uses RCTs and BCTs.

Conclusions: CIR should be given a high priority in medical, health care, and health economic research. Clinicians and leaders at all levels of health care can exploit the evidence from CIR.
RCT is the primary choice of design

BCTs is used solely or in addition to RCTs:
1) **ethical reasons** exclude RCTs;
2) **study question** compatible with BCT design:
 i) to obtain evidence of real world effectiveness
 (e.g. providers have different training)
 ii) to obtain hypothesis generating data of effectiveness
 iii) treatments are off-label
 iv) other reasons;
3) **feasibility reasons** support BCT:
 i) very large studies are needed
 ii) very rare or heterogeneous patient groups
 iii) very complex interventions
 iv) adherence to intervention differs from RCT setting
 v) effectiveness of an intervention is evolving in time
 vi) other reasons; e.g. financial constraints.

BCT is the primary choice of design, and can be used to assess comparative effectiveness of clinical pathways provided by different health care providers.

RCT may be used when the aim is to compare preplanned clinical pathways differing in some major way, e.g. an intensive multidisciplinary clinical rehabilitation pathway compared to a more modest protocol for one years’ duration. Generalization of the results are based on the conceptual idea.

BCT is the only feasible design
Assessing validity of observational intervention studies – the Benchmarking Controlled Trials

Antti Malmivaara
Centre for Health and Social Economics, National Institute for Health and Welfare, Helsinki, Finland

ABSTRACT

Background: Benchmarking Controlled Trial (BCT) is a concept which covers all observational studies aiming to assess impact of interventions or health care system features to patients and populations.

Aims: To create and pilot test a checklist for appraising methodological validity of a BCT.

Methods: The checklist was created by extracting the most essential elements from the comprehensive set of criteria in the previous paper on BCTs. Also checklists and scientific papers on observational studies and respective systematic reviews were utilized. Ten BCTs published in the Lancet and in the New England Journal of Medicine were used to assess feasibility of the created checklist.

Results: The appraised studies seem to have several methodological limitations, some of which could be avoided in planning, conducting and reporting phases of the studies.

Conclusions: The checklist can be used for planning, conducting, reporting, reviewing, and critical reading of observational intervention studies. However, the piloted checklist should be validated in further studies.
<table>
<thead>
<tr>
<th></th>
<th>Criteria for the judgment of acceptable validity (scored 'Yes*') for the sources of risk of bias in Benchmarking Control Trials (3).</th>
</tr>
</thead>
</table>
| 1 | Statistical power calculated.
Score Yes, if description of power calculations and rationale on how the study size was arrived at; post-analysis power calculation is also accepted. |
| 2 | Selection of patients described.
Score Yes, if clear description of patients’ clinical path before eligible for the study; or if the patient population was comprehensive of the catchment area. |
| 3 | Valid and sufficient documentation of baseline characteristics in both index and control populations.*
Score Yes, if demographic and socio-economic factors, clinically important data relevant to the particular disorder/disease (e.g. severity), general health/risk status, comorbid conditions, behavioural and environmental factors when relevant, were sufficiently documented. (N.B. what constitutes ‘sufficient’ should be appraised in relation to the study context: whether or not the risk of bias is increased). |
| 4 | Baseline comparability acceptable.*
Score Yes, if groups are sufficiently similar at baseline regarding demographic and socio-economic factors, duration and severity of the main indication, co-morbid conditions, and value of main outcome measure(s). (N.B. what constitutes ‘sufficient’ should be appraised in relation to the study context: whether or not the risk of bias is increased). If baseline documentation is insufficient, score ‘Unclear’. |
| 5 | Valid and sufficient documentation of degree of adherence to the main intervention(s), and of other processes in both index and control populations.*
Score Yes, if relevant factors for each particular study question are sufficiently reported, like intensity, duration, number and frequency of health services; and if there were no confounding interventions or they were similar between the index and control groups. (N.B. what constitutes ‘sufficient’ should be appraised in relation to the study context: whether or not the risk of bias is increased). |
| 6 | Valid and sufficient documentation of outcomes in both index and control populations, including identical timing of outcome assessment.*
Score Yes, if validity of the outcomes has been documented for both index and control populations, and the follow-up time points are similar; when relevant: if outcomes are assessed also among disadvantaged patients. (N.B. what constitutes ‘sufficient’ should be appraised in relation to the study context: whether or not the risk of bias is increased). |
| 7 | Drop-out rate acceptable.
The number of included participants who did not complete the observation period or were not included in the analysis must be described and reasons given. Score Yes, if the percentage of withdrawals and drop-outs does not exceed 10% and does not lead to substantial bias. (N.B. the percentage is arbitrary, not supported by literature, and should be appraised in relation to the study context). |
| 8 | System related features sufficiently documented in both the index and control health care providers.
Score Yes, if relevant system related factors are sufficiently documented and adjusted for in the statistical analyses: financing of the care system, organization of the case system, available resources, reimbursement and incentives, regulations. If system related features are not relevant in the study context: score ‘Yes’ (N.B. what constitutes ‘sufficient’ should be appraised in relation to the study context: whether or not the risk of bias is increased). |
| 9 | Staff competence, use of up-to-date evidence, quality and benchmarking activities sufficiently documented in both the index and control health care providers.
Score Yes, if differences in staff competence, use of up-to-date evidence, quality and benchmarking activities Real Effectiveness Medicine framework (2) are sufficiently documented between the index and control groups. If these items are not relevant: score ‘Yes’ (N.B. what constitutes ‘sufficient’ should be appraised in relation to the study context: whether or not the risk of bias is increased). |
| 10 | Statistical analyses appropriate.
Score Yes, if all appropriate statistical methods have been used to increase the validity of the comparisons (e.g. instrumental variables when feasible), propensity score matching, baseline-adjustment between observed groups, use of multilevel modelling or survival modelling). |
Comparing ischaemic stroke in six European countries. The EuroHOPE register study

A. Malmivaaraa, A. Meretojab,c, M. Peltolaa, D. Numeratod, R. Heijinke, P. Engelfriete, S. H. Wildf, E. Beliczag, D. Bereczkig, E. Medinh, F. Goudeh, G. Boncoraglioi, T. Tatlisumakb, T. Seppäläa and U. Hääkkinena

aCentre for Health and Social Economics, National Institute for Health and Welfare, Helsinki; bDepartment of Neurology, Helsinki University Central Hospital, Helsinki, Finland; cDepartments of Medicine and the Florey, University of Melbourne, Parkville, Vic., Australia; dCentre for Research on Health and Social Care Management, Bocconi University, Milan, Italy; eNational Institute for Public Health and the Environment, Bilthoven, The Netherlands; fCentre for Population Health Sciences, University of Edinburgh, Edinburgh, Scotland; gSemmelweis University, Budapest, Hungary; hDepartment of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden; and iDepartment of Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy

Keywords: benchmarking, case fatality, Europe, hospitalization, international differences, ischaemic stroke, mortality, quality, register

Received 27 February 2014

Accepted 25 July 2014

Background and purpose: The incidence of hospitalizations, treatment and case fatality of ischaemic stroke were assessed utilizing a comprehensive multinational database to attempt to compare the healthcare systems in six European countries, aiming also to identify the limitations and make suggestions for future improvements in the between-country comparisons.

Methods: National registers of hospital discharges for ischaemic stroke identified by International Classification of Diseases codes 433–434 (ICD-9) and code I63 (ICD-10), medication purchases and mortality were linked at the patient level in each of the participating countries and regions: Finland, Hungary, Italy, the Netherlands, Scotland and Sweden. Patients with an index admission in 2007 were followed for 1 year.

Results: In all, 64,170 patients with a disease code for ischaemic stroke were identi-
EuroHOPE-project. One year mortality for ischaemic stroke in six countries.

8.5.2018
Antti Malmivaara
System impact research – increasing public health and health care system performance

Antti Malmivaara

Centre for Health and Social Economics, National Institute for Health and Welfare, Helsinki, Finland

ABSTRACT

Background Interventions directed to system features of public health and health care should increase health and welfare of patients and population.

Aims To build a new framework for studies aiming to assess the impact of public health or health care system, and to consider the role of Randomized Controlled Trials (RCTs) and of Benchmarking Controlled Trials (BCTs).

Methods The new concept is partly based on the author’s previous paper on the Benchmarking Controlled Trial. The validity and generalizability considerations were based on previous methodological studies on RCTs and BCTs.

Results The new concept System Impact Research (SIR) covers all the studies which aim to assess the impact of the public health system or of the health care system on patients or on population. There are two kinds of studies in System Impact Research: Benchmarking Controlled Trials (observational) and Randomized Controlled Trials (experimental). The term impact covers in particular accessibility, quality, effectiveness, safety, efficiency, and equality.

Conclusions System Impact Research – creating the scientific basis for policy decision making should be given a high priority in medical, public health and health economic research, and should also be used for improving performance. Leaders at all levels of health and social care can use the evidence from System Impact Research for the benefit of patients and population.

ARTICLE HISTORY

Received 28 October 2015
Revised 14 January 2016
Accepted 13 February 2016

KEYWORDS

Health care; public health; health economics; system impact research; randomized controlled trial; benchmarking controlled trial; effectiveness; safety; efficiency; equality
Potential cost savings of selected non-pharmacological treatment strategies for Alzheimer’s disease in Finland - a cost-neutrality model (Manuscript)

Ari Rosenvall, Lauri Sääksvuori, Harriet Finne-Soveri, Ismo Linnosmaa, Antti Malmivaara
Cost savings due to care management, family support and rehabilitation

8.5.2018 Antti Malmivaara
Conclusions
Cumulative effectiveness in rehabilitation, methodological view

Malmivaara A. Validity and Generalizability of Findings of Randomized Trials on Arthroscopic Partial Meniscectomy of the Knee. In Press

8.5.2018

Antti Malmivaara
Cumulative effectiveness in rehabilitation, clinical practice view

Malmivaara A. Validity and Generalizability of Findings of Randomized Trials on Arthroscopic Partial Meniscectomy of the Knee. In Press

8.5.2018

Antti Malmivaara
The six stages in pursuing scientific evidence of effectiveness in rehabilitation

1. Decide upon the most relevant study question(s)
2. Decide whether RCT or BCT is the study design of choice
3. Ensure good description of patient selection, patient characteristics, adherence to interventions and use of valid outcomes to be able to draw conclusions of generalizability of findings
4. Ensure best design in terms of internal validity
5. Ensure good conduct of the protocol
6. Report according to recommendations
Strategy for rehabilitation

Learning together

Bench-marking
Learning from peers

Performance

Quality
Real world performance

EBM
Up-to-date evidence

Current evidence

The basis

Competence
Basis for effectiveness, efficiency and equality

GET INVOLVED!

FOLLOW US
http://rehabilitation.cochrane.org
@CochraneRehab

CONTACT US
cochrane.rehabilitation@gmail.com

Thank you!