

Cochrane Evidence on Rehabilitation using Robotic Technology

Julia Patrick Engkasan Department of Rehabilitation Medicine University of Malaya Malaysia

Trusted evidence. Informed decisions. Better health.

Cochrane SR search

20 CSR

15 for surgery

4 robotics for rehabilitation

Locomotor training for walking after spinal cord injury

Jan Mehrholz, Joachim Kugler, Marcus Pohl

Show Preview ▼ Intervention Review 14 November 2012 New search

Interventions for improving upper limb function after stroke

Alex Pollock, Sybil E Farmer, Marian C Brady, Peter Langhorne, Gillian E Mead, Jan Mehrholz, Frederike van Wijck Show Preview ▼ Overview Review 12 November 2014 Free access

Electromechanical-assisted training for walking after stroke 6 🗸

> Jan Mehrholz, Simone Thomas, Cordula Werner, Joachim Kugler, Marcus Pohl, Bernhard Elsner Show Preview ▼ Intervention Review 10 May 2017 New search Conclusions changed Free access

Electromechanical and robot-assisted arm training for improving activities of daily living, 4 arm function, and arm muscle strength after stroke

Jan Mehrholz, Marcus Pohl, Thomas Platz, Joachim Kugler, Bernhard Elsner

Show Preview ▼ Intervention Review 3 September 2018 New search Conclusions changed

Upper limb functions

Lower limb functions

Upper limb functions

Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke (Review)

Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B

2018

Interventions for improving upper limb function after stroke (Review)

Pollock A, Farmer SE, Brady MC, Langhorne P, Mead GE, Mehrholz J, van Wijck F

2014

Searches a relevant articles up to January 2018 – included 45 studies

P

People with stroke without severe co-morbidities

Robotics technology

C

Other rehabilitation /placebo intervention/ no treatment

 \bigcirc

Activities of daily living (Barthel Index, FIM, stroke Impact Scale, Frenchay arm Test)

Arm function (Fugl-Meyer score, Motricity Index Score)

Muscle strength

The interventions

- > Amadeo (2012)
- > Arm robot, ARMin (2005)
- Neuro-rehabilitation Robot, NeReBot (2007)
- Robotic Rehabilitation System for upper limb motion therapy for the disabled, REHAROB (2007)
- ➤ Bi-Manu-Track (2003)
- InMotion
- MIT-Manus

ADL at the end of intervention (overall)
ADL at the end of intervention (within or more than 3 months post stroke)
Arm functions

Results: ADL at the end of intervention (overall)

Analysis I.I. Comparison I Electromechanical and robotic assisted training versus all other intervention,
Outcome I Activities of daily living at the end of intervention phase.

Results: ADL at the end of intervention (Within / more than 3 months)

 Villafane 2017
 16
 22.8 (2.4)
 16
 21.6 (2.4)

 Volpe 2000
 30
 9.1 (3.3)
 26
 4.4 (2)

Subtotal (95% CI) 283 249

Heterogeneity: $Tau^2 = 0.19$; $Chi^2 = 32.55$, df = 12 (P = 0.001); $I^2 = 63\%$ Test for overall effect: Z = 2.63 (P = 0.0085)

Yoo 2013 II 0.4 (6.1) II 0.1 (3.2)

Subtotal (95% CI) 205 220

Heterogeneity: $Tau^2 = 0.14$; $Chi^2 = 21.72$, df = 10 (P = 0.02); $I^2 = 54\%$ Test for overall effect: Z = 1.16 (P = 0.24)

Test for subgroup differences: $Chi^2 = 0.95$, df = 1 (P = 0.33), $I^2 = 0.0\%$

7.9 % 0.06 [-0.78, 0.90]

100.0 % 0.40 [0.10, 0.70]

0.49 [-0.22, 1.19]

1.67 [1.05, 2.29]

7.4 %

8.1 %

100.0 % 0.19 [-0.13, 0.50]

Arm function at the end of treatment

Arm strength

- > Isolated and analyse trials with good methodology
 - Randomisation
 - Concealed allocation
 - Blinded assesors
 - No differences in ADL and arm functions

Summary

- Improved activities of daily living scores (24 studies, 957 participants), arm function (41 studies, 1452 participants), and arm muscle strength (23 studies, 826 participants)
- > High quality evidence
- > Greatest effect in patients with stroke less than 3 months
- Treatment effects were relatively small
 - > Muscle strength: 0.46 stronger
 - > Will it be clinically meaningful?
 - > The effect may be less than patient & therapist expectation

Do machine and robot assisted training devices improve walking after stroke?

Electromechanical-assisted training for walking after stroke (Review)

Mehrholz J, Thomas S, Werner C, Kugler J, Pohl M, Elsner B

2017

Population	Adults with stroke	
Interventions	Automated electro mechanical gait machines Robotic assisted gait training machines	**Plus physiotherapy
Comparison	Other interventions	
Outcome	WalkingAt end of interventionAt follow up	Independent walking Recovery of independent walking Walking velocity Walking capacity (meters walked in 6 minutes)

Robotic interventions studied

Lokomat (17 studies)

Gait trainer (9 studies) Portable rehab robot

Geo Stride assist

Anklebot HAL

Gait assisted robot Gait master

Walkbot

AlterG

What's included in this review?

Study population: 36 studies with 1472 participants

Duration of intervention: 10 days to 8 weeks with most 3-4 weeks Type of stroke: Majority iscahemic stroke Left sided hemiplegia

Frequency of intervention: 2-3 times to 5 times a week 20-60 minutes each

Independent walking at the end of treatment

Increased the chance of independent walking

Independent walking at follow up

The use of electromechanical devices for gait rehabilitation did not significantly increase independent walking.

Analysis I.3. Comparison I Electromechanical- and robotic-assisted gait training plus physiotherapy versus physiotherapy (or usual care), Outcome 3 Walking velocity (metres per second) at the end of intervention

The use of electromechanical devices for gait rehabilitation did not significantly increase walking velocity.

Walking velocity (m/s) at follow up

The use of electromechanical devices for gait rehabilitation did not significantly increase the walking velocity at follow-up after study end

Analysis I.5. Comparison I Electromechanical- and robotic-assisted gait training plus physiotherapy versus physiotherapy (or usual care), Outcome 5 Walking capacity (metres walked in 6 minutes) at the end of intervention phase.

The use of electromechanical devices for gait rehabilitation did not significantly increase the walking capacity at end of intervention

Walking capacity at follow up

Acute/subacute vs chronic stroke Ambulatory status at study onset Types of devices

Summary

Increased chance of independent walking at the end of treatment but not at follow up

No difference in walking velocity and walking capacity

Outcome not influenced by:
Acute/subacute vs chronic stroke
Ambulatory status at study onset
Types of devices

Trusted evidence. Informed decisions. Better health.

English Title Abstract Key

Cochrane Reviews ▼

Help ▼

Cochrane Database of Systematic Reviews

Locomotor training for walking after spinal cord injury

Cochrane Systematic Review - Intervention | Version published: 14 November 2012 see what's new https://doi.org/10.1002/14651858.CD006676.pub3 3

☑ Jan Mehrholz | Joachim Kugler | Marcus Pohl

View authors' declarations of interest

2012

